How do you solve y^2-3y-9<=0 using a sign chart?

1 Answer
Dec 16, 2016

The answer is y in [(3-sqrt45)/2,(3+sqrt45)/2]

Explanation:

Let f(y)=y^2-3y-9

First we need the roots of the equation

y^2-3y-9=0

We calculate the discriminant

Delta=b^2-4ac=(-3)^2-4*1+(-9)=45

As Delta>0#. we have 2 real roots

y=(3+-sqrtDelta)/2

y_2=(3+sqrt45)/2

y_1=(3-sqrt45)/2

Now we can make the sign chart

color(white)(aaaa)ycolor(white)(aaaa)-oocolor(white)(aaaa)y_1color(white)(aaaa)y_2color(white)(aaaa)+oo

color(white)(aaaa)y-y_1color(white)(aaaa)-color(white)(aaaa)+color(white)(aaaa)+

color(white)(aaaa)y-y_2color(white)(aaaa)-color(white)(aaaa)-color(white)(aaaa)+

color(white)(aaaa)f(y)color(white)(aaaaaa)+color(white)(aaaa)-color(white)(aaaa)+

Therefore,

f(y<=0) when y in [(3-sqrt45)/2,(3+sqrt45)/2]