Let f(y)=y^2-3y-9
First we need the roots of the equation
y^2-3y-9=0
We calculate the discriminant
Delta=b^2-4ac=(-3)^2-4*1+(-9)=45
As Delta>0#. we have 2 real roots
y=(3+-sqrtDelta)/2
y_2=(3+sqrt45)/2
y_1=(3-sqrt45)/2
Now we can make the sign chart
color(white)(aaaa)ycolor(white)(aaaa)-oocolor(white)(aaaa)y_1color(white)(aaaa)y_2color(white)(aaaa)+oo
color(white)(aaaa)y-y_1color(white)(aaaa)-color(white)(aaaa)+color(white)(aaaa)+
color(white)(aaaa)y-y_2color(white)(aaaa)-color(white)(aaaa)-color(white)(aaaa)+
color(white)(aaaa)f(y)color(white)(aaaaaa)+color(white)(aaaa)-color(white)(aaaa)+
Therefore,
f(y<=0) when y in [(3-sqrt45)/2,(3+sqrt45)/2]