How do you solve x + y = 5 x+y=5 and 3x – y = –1 using matrices?

1 Answer
Jul 16, 2018

x=1 and y=4

Explanation:

Here,

x+y=5to(1) , and 3x-y=-1to(2)

Let us write in the matrix equation form :

((1,1),(3,-1))((x),(y))=((5),(-1))

We take ,

A=((1,1),(3,-1)) , X=((x),(y)) ,and B=((5),(-1))

:.AX=B

Now, detA=|(1,1),(3,-1)|=-1-3=-4!=0

:. "We can say that , " A^-1 " exists"

Now ,adjA=((-1,-1),(-3,1))

:.A^-1=1/(detA)*adjA

:.A^-1=-1/4((-1,-1),(-3,1))

We have,

AX=B=>X=A^-1B

=>X=-1/4((-1,-1),(-3,1))((5),(-1))

Using Product of two matrices :

X=-1/4((-5+1),(-15-1))

=>X=-1/4((-4),(-16))

=>((x),(y))=((1),(4))

=>x=1 and y=4