How do you solve x/(x+20)>2/(x+8) using a sign chart?

1 Answer
May 29, 2017

The solution is x in (-oo,-20) uu (-10, -8) uu (4+oo)

Explanation:

Let's rearrange the equation, we cannot do crossing over

x/(x+20)>2/(x+8)

x/(x+20)-2/(x+8)>0

The LCD is (x+20)(x+8)

So,

(x(x+8)-2(x+20))/((x+20)(x+8))>0

(x^2+8x-2x-40)/((x+20)(x+8))>0

(x^2+6x-40)/((x+20)(x+8))>0

((x+10)(x-4))/((x+20)(x+8))>0

Let f(x)=((x+10)(x-4))/((x+20)(x+8))

We can build the sign chart

color(white)(aaaa)xcolor(white)(aaaa)-oocolor(white)(aaaa)-20color(white)(aaaa)-10color(white)(aaaa)-8color(white)(aaaaa)4color(white)(aaaa)+oo

color(white)(aaaa)x+20color(white)(aaaaa)-color(white)(aa)||color(white)(aaa)+color(white)(aaaa)+color(white)(aa)||color(white)(aa)+color(white)(aa)+

color(white)(aaaa)x+10color(white)(aaaaa)-color(white)(aa)||color(white)(aaa)-color(white)(aaaa)+color(white)(aa)||color(white)(aa)+color(white)(aa)+

color(white)(aaaa)x+8color(white)(aaaaaa)-color(white)(aa)||color(white)(aaa)-color(white)(aaaa)-color(white)(aa)||color(white)(aa)+color(white)(aa)+

color(white)(aaaa)x-4color(white)(aaaaaa)-color(white)(aa)||color(white)(aaa)-color(white)(aaaa)-color(white)(aa)||color(white)(aa)-color(white)(aa)+

color(white)(aaaa)f(x)color(white)(aaaaaaa)+color(white)(aa)||color(white)(aaa)-color(white)(aaaa)+color(white)(aa)||color(white)(aa)-color(white)(aa)+

Therefore,

f(x)>0 when x in (-oo,-20) uu (-10, -8) uu (4+oo)