How do you solve x=h+a*cos(t)*cos(s)-b*sin(t)*sin(s) for t?

Show steps.

1 Answer
Aug 9, 2018

See explicit t = g ( x, s )#, in the explanation.

Explanation:

Using c = cos s and d = sin s,

( x - h )^2 = c^2a^2( 1 - d^2 ) + ( 1 - c^2 ) b^2 d^2

- 2cdab sqrt(( 1 - c^2 )( 1 - d^2)). Reorganizing and squaring,

(( x - h )^2 - c^2a^2( 1 - d^2 ) - ( 1 - c^2 ) b^2 d^2)^2

= 4(dab)^2(1-d^2) c^2 ((1-c^2)

Befitting ( abs c <= 1) solutions { cos alpha } of this

biquadratic in c, lead to

c = cos t = cos alpha

rArr, piecewise,

t = 2kpi +-alpha rad.

Example: a = b = 1 and h = 0.

x = cos t cos s - sin t sin s and

(x^2 -c^2 - d^2 + 2c^2 d^2 )^2#

= 4 c^2 (1-c^2) d^2 (1-d^2)

Solve this quadratic in c^2 for c = cos t.

I think, I have paved the way.