The denominator is
x^2+2x=x(x+2)
Let f(x)=(x-4)/(x(x+2))
The domain of f(x) is D_f(x)=RR-{0,-2}
Now, we can do the sign chart
color(white)(aaaa)xcolor(white)(aaaa)-oocolor(white)(aaaa)-2color(white)(aaaa)0color(white)(aaaa)4color(white)(aaaa)+oo
color(white)(aaaa)x-2color(white)(aaaaa)-color(white)(aa)∥color(white)(a)+color(white)(aa)+color(white)(aaa)+
color(white)(aaaa)xcolor(white)(aaaaaaaaa)-color(white)(aa)∥color(white)()-color(white)()∥color(white)(a)+color(white)(aaa)+
color(white)(aaaa)x-4color(white)(aaaaa)-color(white)(aa)∥color(white)()-color(white)()∥color(white)(a)-color(white)(aaa)+
color(white)(aaaa)f(x)color(white)(aaaaaa)-color(white)(aa)∥color(white)()+color(white)()∥color(white)(a)-color(white)(aaa)+
So,
f(x)<=0, when x in ] -oo,-2 [ uu ] 0,4]