How do you solve (x-4)/(x^2+2x)<=0 using a sign chart?

1 Answer
Dec 14, 2016

The answer is x in ] -oo,-2 [ uu ] 0,4]

Explanation:

The denominator is

x^2+2x=x(x+2)

Let f(x)=(x-4)/(x(x+2))

The domain of f(x) is D_f(x)=RR-{0,-2}

Now, we can do the sign chart

color(white)(aaaa)xcolor(white)(aaaa)-oocolor(white)(aaaa)-2color(white)(aaaa)0color(white)(aaaa)4color(white)(aaaa)+oo

color(white)(aaaa)x-2color(white)(aaaaa)-color(white)(aa)color(white)(a)+color(white)(aa)+color(white)(aaa)+

color(white)(aaaa)xcolor(white)(aaaaaaaaa)-color(white)(aa)color(white)()-color(white)()color(white)(a)+color(white)(aaa)+

color(white)(aaaa)x-4color(white)(aaaaa)-color(white)(aa)color(white)()-color(white)()color(white)(a)-color(white)(aaa)+

color(white)(aaaa)f(x)color(white)(aaaaaa)-color(white)(aa)color(white)()+color(white)()color(white)(a)-color(white)(aaa)+

So,
f(x)<=0, when x in ] -oo,-2 [ uu ] 0,4]