How do you solve x^4-5x^2<=-4?

2 Answers
Jan 31, 2017

The answer is x in [-2, -1 ] uu [1, 2 ]

Explanation:

We need

a^2-b^2=(a+b)(a-b)

Let rewrite the inequality

x^4-5x^2+4<=0

Let's factorise

(x^2-1)(x^2-4)<=0

(x+1)(x-1)(x+2)(x-2)<=0

Let f(x)=(x+1)(x-1)(x+2)(x-2)

Let's build a sign chart

color(white)(aaaa)xcolor(white)(aaaa)-oocolor(white)(aaaa)-2color(white)(aaaa)-1color(white)(aaaa)+1color(white)(aaaa)+2color(white)(aaaa)+oo

color(white)(aaaa)x+2color(white)(aaaaaa)-color(white)(aaaa)+color(white)(aaaa)+color(white)(aaaa)+color(white)(aaaa)+

color(white)(aaaa)x+1color(white)(aaaaaa)-color(white)(aaaa)-color(white)(aaaa)+color(white)(aaaa)+color(white)(aaaa)+

color(white)(aaaa)x-1color(white)(aaaaaa)-color(white)(aaaa)-color(white)(aaaa)-color(white)(aaaa)+color(white)(aaaa)+

color(white)(aaaa)x-2color(white)(aaaaaa)-color(white)(aaaa)-color(white)(aaaa)-color(white)(aaaa)-color(white)(aaaa)+

color(white)(aaaa)f(x)color(white)(aaaaaaa)+color(white)(aaaa)-color(white)(aaaa)+color(white)(aaaa)-color(white)(aaaa)+

Therefore,

f(x)<=0 when x in [-2, -1 ] uu [1, 2 ]

Jan 31, 2017

By graphical method, x in [-1, -2] and x in [1. 2]

Explanation:

graph{y-x^4+5x^2-4>=0 [-3.03, 3.048, -1.528, 1.51]}

Let y-(x^4-5x^2+4)>=0.

The section of the graph by the x-axis ( y = 0 ) depicts the solution

-(x^2-5x+4)>=0, giving

x^2-5x+4<=0