We need
#a^2-b^2=(a+b)(a-b)#
Let rewrite the inequality
#x^4-5x^2+4<=0#
Let's factorise
#(x^2-1)(x^2-4)<=0#
#(x+1)(x-1)(x+2)(x-2)<=0#
Let #f(x)=(x+1)(x-1)(x+2)(x-2)#
Let's build a sign chart
#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaa)##-2##color(white)(aaaa)##-1##color(white)(aaaa)##+1##color(white)(aaaa)##+2##color(white)(aaaa)##+oo#
#color(white)(aaaa)##x+2##color(white)(aaaaaa)##-##color(white)(aaaa)##+##color(white)(aaaa)##+##color(white)(aaaa)##+##color(white)(aaaa)##+#
#color(white)(aaaa)##x+1##color(white)(aaaaaa)##-##color(white)(aaaa)##-##color(white)(aaaa)##+##color(white)(aaaa)##+##color(white)(aaaa)##+#
#color(white)(aaaa)##x-1##color(white)(aaaaaa)##-##color(white)(aaaa)##-##color(white)(aaaa)##-##color(white)(aaaa)##+##color(white)(aaaa)##+#
#color(white)(aaaa)##x-2##color(white)(aaaaaa)##-##color(white)(aaaa)##-##color(white)(aaaa)##-##color(white)(aaaa)##-##color(white)(aaaa)##+#
#color(white)(aaaa)##f(x)##color(white)(aaaaaaa)##+##color(white)(aaaa)##-##color(white)(aaaa)##+##color(white)(aaaa)##-##color(white)(aaaa)##+#
Therefore,
#f(x)<=0# when #x in [-2, -1 ] uu [1, 2 ]#