We need
a^2-b^2=(a+b)(a-b)
Let rewrite the inequality
x^4-5x^2+4<=0
Let's factorise
(x^2-1)(x^2-4)<=0
(x+1)(x-1)(x+2)(x-2)<=0
Let f(x)=(x+1)(x-1)(x+2)(x-2)
Let's build a sign chart
color(white)(aaaa)xcolor(white)(aaaa)-oocolor(white)(aaaa)-2color(white)(aaaa)-1color(white)(aaaa)+1color(white)(aaaa)+2color(white)(aaaa)+oo
color(white)(aaaa)x+2color(white)(aaaaaa)-color(white)(aaaa)+color(white)(aaaa)+color(white)(aaaa)+color(white)(aaaa)+
color(white)(aaaa)x+1color(white)(aaaaaa)-color(white)(aaaa)-color(white)(aaaa)+color(white)(aaaa)+color(white)(aaaa)+
color(white)(aaaa)x-1color(white)(aaaaaa)-color(white)(aaaa)-color(white)(aaaa)-color(white)(aaaa)+color(white)(aaaa)+
color(white)(aaaa)x-2color(white)(aaaaaa)-color(white)(aaaa)-color(white)(aaaa)-color(white)(aaaa)-color(white)(aaaa)+
color(white)(aaaa)f(x)color(white)(aaaaaaa)+color(white)(aaaa)-color(white)(aaaa)+color(white)(aaaa)-color(white)(aaaa)+
Therefore,
f(x)<=0 when x in [-2, -1 ] uu [1, 2 ]