How do you solve x^4+36>=13x^2 using a sign chart?

1 Answer
Dec 24, 2016

The answer is x in ] -oo,-3 ] uu [ -2,2 ]uu [3, oo[

Explanation:

We need

a^2-b^2=(a+b)(a-b)

Let's factorise the expression

x^4-13x^2+36= (x^2-4)(x^2-9)

=(x+2)(x-2)(x+3)(x-3)

Let f(x)=(x+2)(x-2)(x+3)(x-3)

We can now do the sign chart

color(white)(aaaa)xcolor(white)(aaaa)-oocolor(white)(aaaa)-3color(white)(aaaa)-2color(white)(aaaa)2color(white)(aaaa)3color(white)(aaaa)+oo

color(white)(aaaa)x+3color(white)(aaaaa)-color(white)(aaaa)+color(white)(aaaa)+color(white)(aaaa)+color(white)(aaa)+

color(white)(aaaa)x+2color(white)(aaaaa)-color(white)(aaaa)-color(white)(aaaa)+color(white)(aaaa)+color(white)(aaa)+

color(white)(aaaa)x-2color(white)(aaaaa)-color(white)(aaaa)-color(white)(aaaa)-color(white)(aaaa)+color(white)(aaa)+

color(white)(aaaa)x-3color(white)(aaaaa)-color(white)(aaaa)-color(white)(aaaa)-color(white)(aaaa)-color(white)(aaa)+

color(white)(aaaa)f(x)color(white)(aaaaaa)+color(white)(aaaa)-color(white)(aaaa)+color(white)(aaaa)-color(white)(aaa)+

Therefore,

f(x>=0), when x in ] -oo,-3 ] uu [ -2,2 ]uu [3, oo[