We need
a^2-b^2=(a+b)(a-b)
Let's factorise the expression
x^4-13x^2+36= (x^2-4)(x^2-9)
=(x+2)(x-2)(x+3)(x-3)
Let f(x)=(x+2)(x-2)(x+3)(x-3)
We can now do the sign chart
color(white)(aaaa)xcolor(white)(aaaa)-oocolor(white)(aaaa)-3color(white)(aaaa)-2color(white)(aaaa)2color(white)(aaaa)3color(white)(aaaa)+oo
color(white)(aaaa)x+3color(white)(aaaaa)-color(white)(aaaa)+color(white)(aaaa)+color(white)(aaaa)+color(white)(aaa)+
color(white)(aaaa)x+2color(white)(aaaaa)-color(white)(aaaa)-color(white)(aaaa)+color(white)(aaaa)+color(white)(aaa)+
color(white)(aaaa)x-2color(white)(aaaaa)-color(white)(aaaa)-color(white)(aaaa)-color(white)(aaaa)+color(white)(aaa)+
color(white)(aaaa)x-3color(white)(aaaaa)-color(white)(aaaa)-color(white)(aaaa)-color(white)(aaaa)-color(white)(aaa)+
color(white)(aaaa)f(x)color(white)(aaaaaa)+color(white)(aaaa)-color(white)(aaaa)+color(white)(aaaa)-color(white)(aaa)+
Therefore,
f(x>=0), when x in ] -oo,-3 ] uu [ -2,2 ]uu [3, oo[