How do you solve x/(3-x)>2/(x+5) using a sign chart?

1 Answer
Feb 1, 2017

The answer is x in ]-7.77, -5[uu ]0.77,3[

Explanation:

We cannot do crossing over

We rewrite the equation

(x)/(3-x)>(2)/(x+5)

(x)/(3-x)-(2)/(x+5)>0

(x(x+5)-2(3-x))/((3-x)(x+5))>0

(x^2+5x-6+2x)/((3-x)(x+5))=(x^2+7x-6)/((3-x)(x+5))

Let f(x)=(x^2+7x-6)/((3-x)(x+5))

The roots of x^2+7x-6 are

x=(-7+-sqrt(49+4*6))/2

x=(-7+-sqrt73)/2

x_1=(-7+8.54)/2=0.77

x_2=(-7-8.54)/2=-7.77

Now, we can build the sign chart

color(white)(aaaa)xcolor(white)(aaaaaa)-oocolor(white)(aaaa)-7.77color(white)(aaaa)-5color(white)(aaaa)0.77color(white)(aaaa)3color(white)(aaaaa)+oo

color(white)(aaaa)x+7.77color(white)(aaaaa)-color(white)(aaaaaa)+color(white)(aa)||color(white)(aa)+color(white)(aaa)+color(white)(aa)||#color(white)(aaa)#+

color(white)(aaaa)x+5color(white)(aaaaaaaa)-color(white)(aaaaaa)-color(white)(aa)||color(white)(aa)+color(white)(aaa)+color(white)(aa)||#color(white)(aaa)#+

color(white)(aaaa)x-0.77color(white)(aaaaaa)-color(white)(aaaaaa)-color(white)(aa)||color(white)(aa)-color(white)(aaa)+color(white)(aa)||#color(white)(aaa)#+

color(white)(aaaa)3-xcolor(white)(aaaaaaaaa)+color(white)(aaaaaa)+color(white)(aa)||color(white)(aa)+color(white)(aaa)+color(white)(aa)||#color(white)(aaa)#-

color(white)(aaaa)f(x)color(white)(aaaaaaaaaa)-color(white)(aaaaaa)+color(white)(aa)||color(white)(aa)-color(white)(aaa)+color(white)(aa)||#color(white)(aaa)#-

Therefore,

f(x)>0 when x in ]-7.77, -5[uu ]0.77,3[