How do you solve x^3+5x^2-4x-20>=0 using a sign chart?

1 Answer
Oct 17, 2017

Solution: -5 <= x <= -2 and x > 2 . In interval notation:
x| [-5,-2]uu [2,oo]

Explanation:

f(x)=x^3+5x^2-4x-20

x^3+5x^2-4x-20 >= 0 or x^2(x+5) -4(x+5) >=0

or =(x+5) (x^2-4) >=0 or(x+5)(x+2)(x-2) >=0 :.

f(x)=(x+5)(x+2)(x-2)

Critical points are x=-5 , x =-2 ,x=2

:.f(-5)=f(-2)=f(2)=0

Sign chart: When x <-5 sign of f(x) is (-)(-)(-)=(-) ; <0

When -5 < x <-2 sign of f(x) is (+)(-)(-)=(+) ; >0

When -2 < x <2 sign of f(x) is (+)(+)(-)=(-) ; <0

When x > 2 sign of f(x) is (+)(+)(+)=(+) ; >0

Solution: -5 <= x <= -2 and x > 2 . In interval notation:

x| [-5,-2]uu [2,oo]

graph{x^3+5x^2-4x-20 [-40, 40, -20, 20]} [Ans]