Let f(x)=x^3+4x^2-x-4
Then, f(1)=1+4-1-4=0
Therefore, (x-1) is a factor of f(x)
To find the other factors, let's do a long division
color(white)(aaaaa)x^3+4x^2-x-4color(white)(aaaaa)∣x-1
color(white)(aaaaa)x^3-x^2color(white)(aaaaaaaaaaaaa)∣x^2+5x+4
color(white)(aaaaaa)0+5x^2-x
color(white)(aaaaaaaa)+5x^2-5x
color(white)(aaaaaaaaaaaa)0+4x-4
color(white)(aaaaaaaaaaaaaa)+4x-4
color(white)(aaaaaaaaaaaaaaa)+0-0
Therefore, f(x)=(x-1)(x+1)(x+4)>=0
Let's do the sign chart
color(white)(aaaa)xcolor(white)(aaaa)-oocolor(white)(aaaa)-4color(white)(aaaa)-1color(white)(aaaa)+1color(white)(aaaa)+oo
color(white)(aaaa)x+4color(white)(aaaaaa)-color(white)(aaaa)+color(white)(aaaa)+color(white)(aaaa)+
color(white)(aaaa)x+1color(white)(aaaaaa)-color(white)(aaaa)-color(white)(aaaa)+color(white)(aaaa)+
color(white)(aaaa)x-1color(white)(aaaaaa)-color(white)(aaaa)-color(white)(aaaa)-color(white)(aaaa)+
color(white)(aaaaa)f(x)color(white)(aaaaaa)-color(white)(aaaa)+color(white)(aaaa)-color(white)(aaaa)+
Therefore f(x)>=0 if x in [-4,-1] uu [1, +oo]
graph{x^3+4x^2-x-4 [-20.28, 20.27, -10.13, 10.13]}