How do you solve x^3+4x^2-x>=4 using a sign chart?

1 Answer
Nov 17, 2016

The naswer is x in [-4,-1] uu [1, +oo]

Explanation:

Let f(x)=x^3+4x^2-x-4

Then, f(1)=1+4-1-4=0

Therefore, (x-1) is a factor of f(x)

To find the other factors, let's do a long division

color(white)(aaaaa)x^3+4x^2-x-4color(white)(aaaaa)x-1

color(white)(aaaaa)x^3-x^2color(white)(aaaaaaaaaaaaa)x^2+5x+4

color(white)(aaaaaa)0+5x^2-x

color(white)(aaaaaaaa)+5x^2-5x

color(white)(aaaaaaaaaaaa)0+4x-4

color(white)(aaaaaaaaaaaaaa)+4x-4

color(white)(aaaaaaaaaaaaaaa)+0-0

Therefore, f(x)=(x-1)(x+1)(x+4)>=0

Let's do the sign chart

color(white)(aaaa)xcolor(white)(aaaa)-oocolor(white)(aaaa)-4color(white)(aaaa)-1color(white)(aaaa)+1color(white)(aaaa)+oo

color(white)(aaaa)x+4color(white)(aaaaaa)-color(white)(aaaa)+color(white)(aaaa)+color(white)(aaaa)+

color(white)(aaaa)x+1color(white)(aaaaaa)-color(white)(aaaa)-color(white)(aaaa)+color(white)(aaaa)+

color(white)(aaaa)x-1color(white)(aaaaaa)-color(white)(aaaa)-color(white)(aaaa)-color(white)(aaaa)+

color(white)(aaaaa)f(x)color(white)(aaaaaa)-color(white)(aaaa)+color(white)(aaaa)-color(white)(aaaa)+

Therefore f(x)>=0 if x in [-4,-1] uu [1, +oo]

graph{x^3+4x^2-x-4 [-20.28, 20.27, -10.13, 10.13]}