How do you solve x^3<=4x^2+3x using a sign chart?

1 Answer
Feb 9, 2017

The answer is x in ]-oo,2-sqrt7]uu [0,2+sqrt7]

Explanation:

Let's rewrite and factorise the inequality

x^3-4x^2-3x<=0

x(x^2-4x-3))<=0

We calculate the roots of the equation x^2-4x-3=0

Delta=(-4)^2-4*1*(-3)=16+12=28

x_1=(4+sqrt28)/2=(4+2sqrt7)/2=2+sqrt7

x_2=(4-sqrt28)/2=(4-2sqrt7)/2=2-sqrt7

Let f(x)=x(x-(2+sqrt7))(x-(2-sqrt7))

Now, we build the sign chart

color(white)(aaaa)xcolor(white)(aaaaaaa)-oocolor(white)(aaaa)2-sqrt7color(white)(aaaa)0color(white)(aaaa)2+sqrt7color(white)(aaaa)+oo

color(white)(aaaa)x-x_2color(white)(aaaaaaa)-color(white)(aaaaaaa)+color(white)(aaaa)+color(white)(aaaaaaa)+

color(white)(aaaa)x-x_1color(white)(aaaaaaa)-color(white)(aaaaaaa)-color(white)(aaaa)-color(white)(aaaaaaa)+

color(white)(aaaa)xcolor(white)(aaaaaaaaaaaa)-color(white)(aaaaaaa)-color(white)(aaaa)+color(white)(aaaaaaa)+

color(white)(aaaa)f(x)color(white)(aaaaaaaaa)-color(white)(aaaaaaa)+color(white)(aaaa)-color(white)(aaaaaaa)+

Therefore,

f(x)<=0 when x in ]-oo,2-sqrt7]uu [0,2+sqrt7]