How do you solve x^3>2x^2+x using a sign chart?

1 Answer
Aug 25, 2017

Solution : -0.4142 < x <0 **and** x >2.4142 **In interval notation:** (-0.4142,0) uu (2.4142,oo)#

Explanation:

x^3 > 2x^2 +x or x^3 - 2x^2 - x > 0 or x( x^2-2x-1) >0 or

Roots of (x^2-2x-1) are x = (2 +- sqrt((2^2-4*1*-1)))/2

or x = 1+- sqrt2 or x = 2.4142 , x= - 0.4142

:. x( x^2-2x-1) >0 or x( x-2.4142)(x+0.4142) >0

Critical points are x=0 , x=2.4142 , x= -0.4142

Sign chart:

When x < -0.4142 sign of x( x-2.4142)(x+0.4142) is

(-) * (-) * (-) = (-) ; <0

When -0.4142 < x <0 sign of x( x-2.4142)(x+0.4142) is

(-) * (-) * (+) = (+) ; >0

When 0 < x <2.4142 sign of x( x-2.4142)(x+0.4142) is

(+) * (-) * (+) = (-) ; <0

When x >2.4142 sign of x( x-2.4142)(x+0.4142) is

(+) * (+) * (+) = (+) ; >0

Solution: -0.4142 < x <0 and x >2.4142 #

In interval notation: (-0.4142,0) uu (2.4142,oo)

graph{x^3-2x^2-x [-10, 10, -5, 5]} [Ans]