Let's rewrite and factorise the inequality
x^3+2x^2<=8x
x^3+2x^2-8x<=0
x(x^2+2x-8)<=0
x(x-2)(x+4)<=0
Let f(x)=x(x-2)(x+4)
Now, we can build the sign chart
color(white)(aaaaa)xcolor(white)(aaaa)-oocolor(white)(aaaa)-4color(white)(aaaa)0color(white)(aaaaa)2color(white)(aaaaa)+oo
color(white)(aaaa)x+4color(white)(aaaaaa)-color(white)(aaaa)+color(white)(aaaa)+color(white)(aaaa)+
color(white)(aaaa)xcolor(white)(aaaaaaaaa)-color(white)(aaaaa)-color(white)(aaaa)+color(white)(aaaa)+
color(white)(aaaa)x-2color(white)(aaaaaa)-color(white)(aaaa)-color(white)(aaaa)-color(white)(aaaa)+
color(white)(aaaa)f(x)color(white)(aaaaaaa)-color(white)(aaaa)+color(white)(aaaa)-color(white)(aaaa)+
Therefore,
f(x)<=0, when x in ]-oo,-4]uu[0, 2]