f(x)= (x-2) (x+1) (x-5)>= 0f(x)=(x−2)(x+1)(x−5)≥0 . Crititical numbers
are x=-1 , x=2 ,x=5x=−1,x=2,x=5. Since at those numbers f(x)=0f(x)=0
Sign chart:
When x< -1x<−1 sign of (x-2)(x+1)(x-5) (x−2)(x+1)(x−5) is (-) * (-)* (-) = (-) ; < 0(−)⋅(−)⋅(−)=(−);<0
When -1 < x < 2 −1<x<2 sign of (x-2)(x+1)(x-5) (x−2)(x+1)(x−5) is (-) * (+)* (-) = (+) ; > 0(−)⋅(+)⋅(−)=(+);>0
When 2 < x < 5 2<x<5 sign of (x-2)(x+1)(x-5) (x−2)(x+1)(x−5) is (+) * (+)* (-) = (-) ; < 0(+)⋅(+)⋅(−)=(−);<0
When x > 5 x>5 sign of (x-2)(x+1)(x-5) (x−2)(x+1)(x−5) is (+) * (+)* (+) = (+) ; > 0(+)⋅(+)⋅(+)=(+);>0
Solution: -1 <= x < 2 and x >=5 or [-1,2] uu [5,oo) −1≤x<2andx≥5or[−1,2]∪[5,∞)
graph{(x-2)(x+1)(x-5) [-40, 40, -20, 20]} [Ans]