Solve by completing the square.
#x^2+6x+13=0#
Move the constant to the right side by subtracting 13 from each side.
#x^2+6xcolor(white)(aaaa)=-13#
Divide the coefficient of the #x# term by #2#.
#x^2+color(red)6xcolor(white)(aaaa)=-13#
#color(red)6/2=color(blue)3#
Square the result and add it to both sides.
#color(blue)3^2=color(magenta)9#
#x^2+6x +color(magenta)9=-13+color(magenta)9#
Factor the left side and simplify the right side.
#(x+color(blue)3)(x+color(blue)3)=-4#
Rewrite as the square of the binomial. Note that the #color(blue)3# in the binomial is the same value #color(blue)3# that resulted from dividing the coefficient of the #x# term by #2#.
#(x+color(blue)3)^2=-4#
Square root both sides and solve for #x#.
#sqrt((x+color(blue)3)^2)=sqrt(-4)#
#x+color(blue)3=+-2i#
#x=-3+-2i#