How do you solve x^2+6x>=0 using a sign chart?

1 Answer
Feb 18, 2018

Solution: x <= -6 and x >=0 . In interval notation:

x| (-oo,-6]uu [0,oo)

Explanation:

x^2+6x>=0 or x(x+6) >=0

Critical points are x=0 and x=-6

Sign chart:

When x <=-6 sign of f(x) is (-)(-)=(+) ; >=0

When -6 < x <0 sign of f(x) is (-)(+)=(-) ; <0

When x >=0 sign of f(x) is (+)(+)=(+) ; >=0

Solution: x <= -6 and x >=0 . In interval notation:

x| (-oo,-6]uu [0,oo)

graph{x^2+6x [-20, 20, -10, 10]} [Ans]