How do you solve x^2-3x>54 using a sign chart?

1 Answer
Jan 19, 2017

The answer is x in ] -oo,-6 [ uu ] 9, oo [

Explanation:

Let's rewrite the inequality

x^2-3x-54>0

Let's factorise

x^2-3x-54=(x+6)(x-9)

and let f(x)=x^2-3x-54

Now we can make the sign chart

color(white)(aaaa)xcolor(white)(aaaa)-oocolor(white)(aaaa)-6color(white)(aaaa)9color(white)(aaaaa)+oo

color(white)(aaaa)x+6color(white)(aaaaa)-color(white)(aaaa)+color(white)(aaaa)+

color(white)(aaaa)x-9color(white)(aaaaa)-color(white)(aaaa)-color(white)(aaaa)+

color(white)(aaaa)f(x)color(white)(aaaaaa)+color(white)(aaaa)-color(white)(aaaa)+

Therefore,

f(x)>0, when x in ] -oo,-6 [ uu ] 9, oo [