How do you solve x^2-3x-4>=0 using a sign chart?

1 Answer
Nov 1, 2016

The answer is -oo < x <=-1 and 4<= x<+oo

Explanation:

Start by factorising
x^2-3x-4=(x+1)(x-4)
let y=(x+1)(x-4)
So we can make the sign chart
xcolor(white)(aaaa)-oocolor(white)(aaaa)-1color(white)(aaaa)4color(white)(aaaa)+oo
x+1color(white)(aaaa)-color(white)(aaaaa)+color(white)(aaaa)+
x-4color(white)(aaaa)-color(white)(aaaaa)-color(white)(aaaa)+
ycolor(white)(aaaaaaaa)+color(white)(aaaaa)-color(white)(aaaa)+

So x^2-3x-4>=0
when -oo < x <=-1 and when 4<= x<+oo