How do you solve x^2-3x>=10 using a sign chart?

1 Answer
Dec 11, 2016

The answer is x in ] -oo,-2 ] uu [5, +oo[

Explanation:

Let's rewrite the equation

x^2-3x-10>=0

Let f(x)=x^2-3x-10=(x+2)(x-5)

The domain of f(x) is D_f(x)=RR

Let's do the sign chart

color(white)(aaaa)xcolor(white)(aaaa)-oocolor(white)(aaaa)-2color(white)(aaaa)5color(white)(aaaa)+oo

color(white)(aaaa)x-2color(white)(aaaaa)-color(white)(aaaa)+color(white)(aaaa)+

color(white)(aaaa)x-5color(white)(aaaaa)-color(white)(aaaa)-color(white)(aaaa)+

color(white)(aaaa)f(x)color(white)(aaaaaa)+color(white)(aaaa)-color(white)(aaaa)+

So,

f(x)>=0 when x in ] -oo,-2 ] uu [5, +oo[