How do you solve x^2-2x-4>0 using a sign chart?

1 Answer
Jul 14, 2017

The solution is x in (-oo, (1-sqrt5)) uu((1+sqrt5), +oo)

Explanation:

We must first find the roots of the quadratic equations

x^2-2x-4=0

The discriminant is

Delta=b^2-4ac=(-2)^2-4*(1)*(-4)=20

As Delta>0, there are 2 real roots

The roots are

x=(-b+-sqrtDelta)/(2a)

x_1=(2-sqrt20)/2=1-sqrt5

x_2=(2+sqrt20)/2=1+sqrt5

Let f(x)=x^2-2x-4

We can build the sign chart

color(white)(aaaa)xcolor(white)(aaaaaa)-oocolor(white)(aaaa)x_1color(white)(aaaa)x_2color(white)(aaaa)+oo

color(white)(aaaa)(x-x_1)color(white)(aaaaa)-color(white)(aaaa)+color(white)(aaaa)+

color(white)(aaaa)(x-x_2)color(white)(aaaaa)-color(white)(aaaa)-color(white)(aaaa)+

color(white)(aaaa)f(x)color(white)(aaaaaaaa)+color(white)(aaaa)-color(white)(aaaa)+

Therefore,

f(x)>0 when x in (-oo, (1-sqrt5)) uu((1+sqrt5), +oo)