Let #f(x)=x^3+2x^2-4x-8#
Then #f(2)=8+8-8-8=0#
Therefore, #(x-2)# is a factor of #f(x)#
#f(-2)=-8+8+8-8=0#
Therefore, #(x+2)# is a factor of #f(x)#
So, #(x+2)(x-2)=x^2-4# is a factor of #f(x)#
To find the last factor, let's do a long division
#color(white)(aaaa)##x^3+2x^2-4x-8##color(white)(aaaa)##∣##x^2-4#
#color(white)(aaaa)##x^3##color(white)(aaaaaaa)##-4x##color(white)(aaaaaaa)##∣##x+2#
#color(white)(aaaa)##0+2x^2##color(white)(aaaaa)##0-8#
#color(white)(aaaaaa)##+2x^2##color(white)(aaaaaaa)##-8#
#color(white)(aaaaaaaa)##0##color(white)(aaaaaaaaaa)##0#
So, #f(x)=(x+2)^2(x-2)#
As #(x+2)^2>0#
Therefore, the sign of #f(x)# will depend on the sign of #(x-2)#
When #x<2#, #f(x)<0#
and when #x>=2#, #f(x)>=0#
graph{x^3+2x^2-4x-8 [-20.28, 20.27, -10.14, 10.14]}