Let's rewrite the equation
x^2-4x-1>=0
Let f(x)=x^2-4x-1
We need the values of x, when f(x)=0
that is, x^2-4x-1=0
Let's calculate Delta=16-4*1*-1=20
Delta>0. there are 2 real solutions
x_1=(4+sqrt20)/2=(4+2sqrt5)/2=2+sqrt5
x_2=(4-sqrt20)/2=(4-2sqrt5)/2=2-sqrt5
Now, we can do our sign chart
color(white)(aaaa)xcolor(white)(aaaaaaaaa)-oocolor(white)(aaaa)(2-sqrt5)color(white)(aaaa)(2+sqrt5)color(white)(aaaa)+oo
color(white)(aaaa)x-2+sqrt5color(white)(aaaaa)-color(white)(aaaaaaaaaa)+color(white)(aaaaaaaaa)+
color(white)(aaaa)x-2-sqrt5color(white)(aaaaa)-color(white)(aaaaaaaaaa)-color(white)(aaaaaaaaa)+
color(white)(aaaa)f(x)color(white)(aaaaaaaaaaa)+color(white)(aaaaaaaaaa)-color(white)(aaaaaaaaa)+
Therefore,
f(x>=0) when x in ] -oo,(2-sqrt5) ] uu [(2+sqrt5), +oo[
graph{x^2-4x-1 [-11.25, 11.25, -5.625, 5.625]}