How do you solve x-10/(x-1)>=4 using a sign chart?

1 Answer
Nov 18, 2016

The answer is x in ]-oo,-1 ]uu [6, +oo[

Explanation:

Let's do some simplification

x-10/(x-1)>=4

Multiply by (x-1)

x(x-1)-10>=4(x-1)

x^2-x-10>=4x-4

x^2-5x-6>=0

Factorising

(x+1)(x-6)>=0

Let f(x)=(x+1)(x-6)

let's do a sign chart

color(white)(aaaa)xcolor(white)(aaaaaa)-oocolor(white)(aaaa)-1color(white)(aaaa)6color(white)(aaaa)+oo

color(white)(aaaa)(x+1)color(white)(aaaaaa)-color(white)(aaa)+color(white)(aaa)+

color(white)(aaaa)(x-6)color(white)(aaaaaa)-color(white)(aaa)-color(white)(aaa)+

color(white)(aaaa)f(x)color(white)(aaaaaaaaa)+color(white)(aaa)-color(white)(aaa)+

f(x)>=0, when x in ]-oo,-1 ]uu [6, +oo[

graph{(x+1)(x-6) [-17.02, 15.02, -12.81, 3.21]}