How do you solve (x+1)^2/(x^2+2x-3)<=0(x+1)2x2+2x30 using a sign chart?

1 Answer
Dec 16, 2016

The answer is x in ] -3,1 [x]3,1[

Explanation:

Let's factorise the denominator

x^2+2x-3=(x-1)(x+3)x2+2x3=(x1)(x+3)

Let f(x)=(x+1)^2/((x-1)(x+3))f(x)=(x+1)2(x1)(x+3)

The domain of f(x)f(x) is D_f(x)=RR-{-3,1}

The numerator (x+1)^2>0, AAx in D_f(x)

Now we can do the sign chart

color(white)(aaaa)xcolor(white)(aaaa)-oocolor(white)(aaaa)-3color(white)(aaaa)1color(white)(aaaa)+oo

color(white)(aaaa)x+3color(white)(aaaa)-color(white)(aaaaa)+color(white)(aaaa)+

color(white)(aaaa)x-1color(white)(aaaa)-color(white)(aaaaa)-color(white)(aaaa)+

color(white)(aaaa)f(x)color(white)(aaaaa)+color(white)(aaaaa)-color(white)(aaaa)+

Therefore,

f(x)<=0 when x in ] -3,1 [

graph{y-(x+1)^2/(x^2+2x-3)=0 [-12.66, 12.65, -6.33, 6.33]}