How do you solve this sigma problem?
#sum# 3(5)n-1
There is an 8 above the sigma and n=1
There is an 8 above the sigma and n=1
2 Answers
Explanation:
Not sure of your notation here. I am assuming it is:
We can recognise
Where:
The sum of a geometric series is given as:
So plugging in the known values:
Explanation:
#"assuming "sum_(n=1)^8 3(5)n-1#
#"using the "color(blue)"summation blocks"#
#•color(white)(x)sum_(r=1)^n 1=n#
#•color(white)(x)sum_(r=1)^n r=1/2n(n+1)#
#"the question simplifies to"#
#sum_(n=1)^8 15n-1#
#=15sum_(n=1)^8 n-sum_(n=1)^8 1#
#=15/2xx(8xx9)-8#
#=540-8=532#