The given eqn. is, (x^2+14x+24)(x^2+11x+24)=4x^2.(x2+14x+24)(x2+11x+24)=4x2.
Let, x^2+24=y.x2+24=y. Then,
(y+14x)(y+11x)=4x^2.(y+14x)(y+11x)=4x2.
:. y^2+(14x+11x)y+(14x)(15x)-4x^2=0, i.e.,
y^2+25xy+154x^2-4x^2=0, or,
y^2+25xy+150x^2=0.
:. ul(y^2+15xy)+ul(10xy+150x^2)=0.
:. y(y+15x)+10x(y+15x).
:. (y+15x)(y+10x)=0.
Since, y=x^2+24, we have,
:. (x^2+15x+24)(x^2+10x+24)=0.
If, x^2+15x+24=0, then, using the quadratic formula,
x=[-15+-sqrt{15^2-4*1*24}]/(2*1)=[-15+-sqrt(225-96)]/2.
:. x=(-15+-sqrt129)/2~~(-15+-11.36)/2, or,
x~~-1.82, or, x~~-13.18.
If, x^2+10x+24=0," then, "(x+6)(x+4)=0.
:. x=-6, or, x=-4.
Hence, the Solution Set is {-1.82, -13.18, -6, -4}.