How do you solve the triangle if b = 12, c=8, a=15?

1 Answer
Jul 9, 2018

A~~95.08^@, B~~52.83^@, and, C~~32.09^@.

Explanation:

Using the cosine formula, we get,

cosA=(b^2+c^2-a^2)/(2bc),

=(12^2+8^2-15^2)/(2*12*8),

=(144+64-225)/192,

=-17/192.

:. A=arccos(-17/192)~~95.08^@.

B=arccos((c^2+a^2-b^2)/(2ca)),

=arccos{(8^2+15^2-12^2)/(2*8*15)},

=arccos(145/240).

rArr B~~52.83^@.

Finally, C=arccos((a^2+b^2-c^2)/(2ab)),

=arccos{(15^2+12^2-8^2)/(2*15*12)},

=arccos(305/360).

rArr C~~32.09^@.

or, C=180^@-(95.08^@+52.83^@)~~32.09^@.