How do you solve the triangle ABC given A=30, b=4, c=6?

1 Answer
Feb 20, 2017

a=2sqrt(13-6sqrt3)~=3.23a=213633.23

hat B=sin^(-1)(1/(sqrt(13-6sqrt3)))~=38.26°

hat C~=180°-hatA-hatB~=111.74°

Explanation:

You would apply the cosine theorem to find the third side a:

a=sqrt(b^2+c^2-2bc cos hatA

Then

a=sqrt(4^2+6^2-2*4*6*cos30°)

=sqrt(16+36-cancel48^24*sqrt3/cancel2)

=sqrt(4(4+9-6sqrt(3))

=2sqrt(13-6sqrt3)~=3.23

To find the angle hat B, you would apply the sine theorem:

a/(sin hat A)=b/(sin hatB)

or

sin hat B=b/a*sin hat A

=cancel4^2/(cancel2sqrt(13-6sqrt3))*sin 30°

cancel2/(sqrt(13-6sqrt3))*1/cancel2

=1/(sqrt(13-6sqrt3))

then

hat B=sin^(-1)(1/(sqrt(13-6sqrt3)))~=38.26°

hat C~=180°-hatA-hatB~=111.74°

enter image source here