You would apply the cosine theorem to find the third side a:
#a=sqrt(b^2+c^2-2bc cos hatA#
Then
#a=sqrt(4^2+6^2-2*4*6*cos30°)#
#=sqrt(16+36-cancel48^24*sqrt3/cancel2)#
#=sqrt(4(4+9-6sqrt(3))#
#=2sqrt(13-6sqrt3)~=3.23#
To find the angle #hat B#, you would apply the sine theorem:
#a/(sin hat A)=b/(sin hatB)#
or
#sin hat B=b/a*sin hat A#
#=cancel4^2/(cancel2sqrt(13-6sqrt3))*sin 30°#
#cancel2/(sqrt(13-6sqrt3))*1/cancel2#
#=1/(sqrt(13-6sqrt3))#
then
#hat B=sin^(-1)(1/(sqrt(13-6sqrt3)))~=38.26°#
#hat C~=180°-hatA-hatB~=111.74°#