How do you solve the system 9x+3y=1, 5x+y=19x+3y=1,5x+y=1 using matrix equation?

1 Answer
Dec 8, 2016

The answer is x=1/3x=13 and y=-2/3y=23

Explanation:

Let' write the matrix corresponding to the 2 equations

((9,3),(5,1))*((x),(y))=((1),(1))

Let A=((9,3),(5,1))

Then

((x),(y))=A^(-1)*((1),(1))

We must calculate the inverse of matrix A

The inverse of matrix ((a,b),(c,d)) is

1/(ad-bc)*((d,-b),(-c,a))

So,

A^(-1)=1/(-6)((1,-3),(-5,9))

=((-1/6,1/2),(5/6,-3/2))

Verification

A*A^(-1)=I

((-1/6,1/2),(5/6,-3/2))*((9,3),(5,1))=((1,0),(0,1))=I

Now, we can solve our equation

((x),(y))=((-1/6,1/2),(5/6,-3/2))*((1),(1))

x=-1/6+1/2=1/3

y=5/6-3/2=-2/3