How do you solve the quadratic x^2-(4+i)x+9+7i=0 using any method?
2 Answers
Explanation:
Quadratic formula
The zeros of a quadratic in the form
x = (-b+-sqrt(b^2-4ac))/(2a)
In our example:
x^2-(4+i)x+(9+7i)=0
we have
x = ((4+i)+-sqrt((-(4+i))^2-4(1)(9+7i)))/(2*1)
=((4+i)+-sqrt((16+8i+i^2)-36-28i))/2
=((4+i)+-sqrt(-21-20i))/2
=((4+i)+-i sqrt(21+20i))/2
Sqaure root of a+bi
Note that I found in https://socratic.org/s/aw38evei
that the square roots of
+-((sqrt((sqrt(a^2+b^2)+a)/2)) + (b/abs(b) sqrt((sqrt(a^2+b^2)-a)/2))i)
In particular, if
(sqrt((sqrt(a^2+b^2)+a)/2)) + (sqrt((sqrt(a^2+b^2)-a)/2))i
So we find:
sqrt(21+20i)
=(sqrt((sqrt(21^2+20^2)+21)/2)) + (sqrt((sqrt(21^2+20^2)-21)/2))i
=(sqrt((sqrt(441+400)+21)/2)) + (sqrt((sqrt(441+400)-21)/2))i
=(sqrt((sqrt(841)+21)/2)) + (sqrt((sqrt(841)-21)/2))i
=(sqrt((29+21)/2)) + (sqrt((29-21)/2))i
=(sqrt(50/2)) + (sqrt(8/2))i
=(sqrt(25)) + (sqrt(4))i
=5+2i
Conclusion
So:
x=((4+i)+-i sqrt(21+20i))/2
=((4+i)+-i (5+2i))/2
=((4+i)+-(-2+5i))/2
= { ((2+6i)/2 = 1+3i), ((6-4i)/2 = 3-2i) :}
Factor
1+3i and3-2i
Explanation:
Note that if this has roots
x^2-(4+i)x+(9+7i)
= (x-x_1)(x-x_2) = x^2-(x_1+x_2)+x_1 x_2
So we want to find
{ (x_1 + x_2 = 4+i), (x_1 x_2 = 9+7i) :}
Gaussian integers
What are the Gaussian integer factors of
|| 9 + 7i || = sqrt(9^2+7^2) = sqrt(81+49) = sqrt(130)
Any Gaussian integer factors of
130 = 2 * 5 * 13
Up to a unit factor, the only Gaussian integer with norm
(9+7i)/(1+i) = ((9+7i)(1-i))/((1+i)(1-i)) = (16-2i)/2 = 8-i
Gaussian integers with norm
(8-i)/(2+i) = ((8-i)(2-i))/((2+i)(2-i)) = (15-10i)/5 = 3-2i
So:
9+7i = (1+i)(2+i)(3-2i)
Any unit (
Taking pairs of these factors we find:
(1+i)(2+i) = 1+3i " " with co-factor(3-2i)
(2+i)(3-2i) = 8-i " " with co-factor(1+i)
(1+i)(3-2i) = 6-5i " " with co-factor(2+i)
The first of these sums to
(1+3i) + (3-2i) = 4+i
So our zeros are