How do you solve the quadratic a^2-(1-4i)a-5+i=0 using any method?

1 Answer
Oct 29, 2016

With a=x+iy the solutions are
((x = 0, y = 1),(x=1/2 - 3 i, y= -2 - i/2),(x = 1/2 + 3 i, y = -2 + i/2),(x = 1, y= -5))

Explanation:

Calling p(a)=a^2-(1-4i)a-5+i=0

and making a = x+iy we have

p(x+iy)=x^2 - 4 y - y^2-x-5 + i (4 x - y + 2 x y+1)=0

Solving now for x,y

{(x^2 - 4 y - y^2-x-5=0),(4 x - y + 2 x y+1=0):}

we obtain the solutions

((x = 0, y = 1),(x=1/2 - 3 i, y= -2 - i/2),(x = 1/2 + 3 i, y = -2 + i/2),(x = 1, y= -5))