How do you solve the quadratic #3x^2-5x-12=0# using any method?
1 Answer
Explanation:
Method 1 - Completing the square
#0 = 12(3x^2-5x-12)#
#color(white)(0) = 36x^2-60x-144#
#color(white)(0) = (6x)^2-2(6x)(5)+25-169#
#color(white)(0) = (6x-5)2-13^2#
#color(white)(0) = ((6x-5)-13)((6x-5)+13)#
#color(white)(0) = (6x-18)(6x+8)#
#color(white)(0) = (6(x-3))(2(3x+4))#
#color(white)(0) = 12(x-3)(3x+4)#
Hence:
#x = 3" "# or#" "x=-4/3#
Method 2 - AC method
Given:
#3x^2-5x-12#
Find a pair of factors of
The pair
Use this pair to split the middle term, then factor by grouping:
#0 = 3x^2-5x-12#
#color(white)(0) = (3x^2-9x)+(4x-12)#
#color(white)(0) = 3x(x-3)+4(x-3)#
#color(white)(0) = (3x+4)(x-3)#
Hence:
#x = -4/3" "# or#" "x=3#
Method 3 - Quadratic formula
The equation:
#3x^2-5x-12 = 0#
is in the form:
#ax^2+bx+c = 0#
with
The roots are given by the quadratic formula:
#x = (-b+-sqrt(b^2-4ac))/(2a)#
#color(white)(x) = (5+-sqrt((-5)^2-4(3)(-12)))/(2(3))#
#color(white)(x) = (5+-sqrt(25+144))/6#
#color(white)(x) = (5+-sqrt(169))/6#
#color(white)(x) = (5+-13)/6#
That is:
#x = (5+13)/6 = 18/6 = 3" "# or#" "x = (5-13)/6 = -8/6 = -4/3#