First, we must solve the equation
#2x^2-4x-1=0#
The discriminant is
#Delta=b^2-4ac=(-4)^2-4(2)(-1)=16+8=24#
As, #Delta>0#, there are 2 real roots
#x=(-b+-sqrt(Delta))/(2a)#
#x_1=(4-sqrt24)/4=(4-2sqrt6)/4=1-sqrt6/2=-0.225#
#x_2=(4+sqrt24)/4=(4+2sqrt6)/4=1+sqrt6/2=2.225#
Let #f(x)=2x^2-4x-1#
Now, we build the sign chart
#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaa)##x_1##color(white)(aaaa)##x_2##color(white)(aaaa)##+oo#
#color(white)(aaaa)##x-x_1##color(white)(aaaa)##-##color(white)(aaaa)##+##color(white)(aaaa)##+#
#color(white)(aaaa)##x-x_2##color(white)(aaaa)##-##color(white)(aaaa)##-##color(white)(aaaa)##+#
#color(white)(aaaa)##f(x)##color(white)(aaaaaa)##+##color(white)(aaaa)##-##color(white)(aaaa)##+#
Therefore,
#f(x)>0#, when #x in ]-oo,(1-sqrt6/2)[ uu ] (1+sqrt6/2), +oo[#