How do you solve the equation x^2-3/2x-23/16=0 by completing the square?

1 Answer
Nov 13, 2016

x=3/4+sqrt2 or x=3/4-sqrt2

Explanation:

x^2-3/2x-23/16=0

completing square of form (x-a)^2=x^2-2ax+a^2, above becomes

x^2-2xx3/4xx x+(3/4)^2-(3/4)^2-23/16=0

or (x-3/4)^2-9/16-23/16=0 or (x-3/4)^2-32/16=0

or (x-3/4)^2-(sqrt2)^2=0

and factorizing it using a^2-b^2=(a+b)(a-b), we get

(x-3/4-sqrt2)(x-3/4+sqrt2)=0

Hence, either x-3/4-sqrt2=0 i.e. x=3/4+sqrt2

or x-3/4+sqrt2=0 i.e. x=3/4-sqrt2