How do you solve the equation 2x^2-3x+1=0 by completing the square?
1 Answer
Jan 8, 2017
Explanation:
f(x) = 2x^2-3x+1
The difference of squares identity can be written:
a^2-b^2 = (a-b)(a+b)
We will use this with
First pre-multiply by
0 = 8f(x)
color(white)(0) = 8(2x^2-3x+1)
color(white)(0) = 16x^2-24x+8
color(white)(0) = (4x)^2-2(4x)(3)+9-1
color(white)(0) = (4x-3)^2-1^2
color(white)(0) = ((4x-3)-1)((4x-3)+1)
color(white)(0) = (4x-4)(4x-2)
color(white)(0) = (4(x-1))(2(2x-1))
color(white)(0) = 8(x-1)(2x-1)
So