How do you solve sin 2x=sinx sin2x=sinx over the interval 0 to 2pi?

1 Answer
Mar 2, 2016

Solution is x={0, pi/3, pi, (5pi)/3, 2pi}x={0,π3,π,5π3,2π}

Explanation:

As sin2x=2sinxcosxsin2x=2sinxcosx,

sin2x=sinxsin2x=sinx is equivalent to

2sinxcosx=sinx2sinxcosx=sinx or 2sinxcosx-sinx=02sinxcosxsinx=0 or

sinx(2cosx-1)=0sinx(2cosx1)=0 i.e.

either sinx=0sinx=0 and x=0, pi, 2pix=0,π,2π

or 2cosx-1=02cosx1=0 i.e. cosx=1/2cosx=12 i.e. x=pi/3, (5pi)/3x=π3,5π3

Hence, Solution is x={0, pi/3, pi, (5pi)/3, 2pi}x={0,π3,π,5π3,2π}