How do you solve (q+4)^2>10q+31(q+4)2>10q+31 using a sign chart?

1 Answer
Aug 7, 2017

The solution is q in (-oo, -3) uu (5, +oo)q(,3)(5,+)

Explanation:

Let's rearrange and factorise the inequality

(q+4)^2>10q+31(q+4)2>10q+31

q^2+8q+16>10q+31q2+8q+16>10q+31

q^2+8q+16-10q-31>0q2+8q+1610q31>0

q^2-2q-15>0q22q15>0

(q+3)(q-5)>0(q+3)(q5)>0

Let f(q)=(q+3)(q-5)f(q)=(q+3)(q5)

We can build the sign chart

color(white)(aaaa)aaaaqqcolor(white)(aaaa)aaaa-oocolor(white)(aaaa)aaaa-33color(white)(aaaa)aaaa55color(white)(aaaa)aaaa+oo+

color(white)(aaaa)aaaaq+3q+3color(white)(aaaaa)aaaaa-color(white)(aaaa)aaaa++color(white)(aaaa)aaaa++

color(white)(aaaa)aaaaq-5q5color(white)(aaaaa)aaaaa-color(white)(aaaa)aaaa-color(white)(aaaa)aaaa++

color(white)(aaaa)aaaaf(q)f(q)color(white)(aaaaaa)aaaaaa++color(white)(aaaa)aaaa-color(white)(aaaa)aaaa++

Therefore,

f(q)>0f(q)>0 when q in (-oo, -3) uu (5, +oo)q(,3)(5,+)

graph{(x+4)^2-10x-31 [-27.53, 23.8, -17.2, 8.47]}