Let's rewrite the equation
#-p^2+10p-7<=14#, #hArr#, #p^2-10p+21>=0#
Let 's factorise the LHS
#(p-3)(p-7)>=0#
Let #f(p)=(p-3)(p-7)#
Now we can make the sign chart
#color(white)(aaaa)##p##color(white)(aaaaa)##-oo##color(white)(aaaa)##3##color(white)(aaaaa)##7##color(white)(aaaa)##+oo#
#color(white)(aaaa)##p-3##color(white)(aaaaa)##-##color(white)(aaaa)##+##color(white)(aaaa)##+#
#color(white)(aaaa)##p-7##color(white)(aaaaa)##-##color(white)(aaaa)##-##color(white)(aaaa)##+#
#color(white)(aaaa)##f(p)##color(white)(aaaaaa)##+##color(white)(aaaa)##-##color(white)(aaaa)##+#
Therefore,
#f(p)>=#, when # p in ] -oo,3 ]uu [7,+ oo[ #