How do you solve m/(m-5)+3/(m-1)>0 using a sign chart?

1 Answer
Apr 11, 2017

The solution is m in (-oo,-5)uu(1,3)uu(5,+oo)

Explanation:

Let's do some simplification

m/(m-5)+3/(m-1)>0

(m^2-m+3m-15)/((m-5)(m-1))>0

(m^2+2m-15)/((m-5)(m-1))>0

((m+5)(m-3))/((m-5)(m-1))>0

Let f(m)=((m+5)(m-3))/((m-5)(m-1))

We can build the sign chart

color(white)(aaaa)mcolor(white)(aaaa)-oocolor(white)(aaaa)-5color(white)(aaaaaaa)1color(white)(aaaaa)3color(white)(aaaaaaa)5color(white)(aaaa)+oo

color(white)(aaaa)m+5color(white)(aaaa)-color(white)(aaaaa)+color(white)(aaaa)||color(white)(aa)+color(white)(aa)+color(white)(aaaa)||color(white)(aa)+

color(white)(aaaa)m-1color(white)(aaaa)-color(white)(aaaaa)-color(white)(aaaa)||color(white)(aa)+color(white)(aa)+color(white)(aaaa)||color(white)(aa)+

color(white)(aaaa)m-3color(white)(aaaa)-color(white)(aaaaa)-color(white)(aaaa)||color(white)(aa)-color(white)(aa)+color(white)(aaaa)||color(white)(aa)+

color(white)(aaaa)m-5color(white)(aaaa)-color(white)(aaaaa)-color(white)(aaaa)||color(white)(aa)-color(white)(aa)-color(white)(aaaa)||color(white)(aa)+

color(white)(aaaa)f(m)color(white)(aaaaa)+color(white)(aaaaa)-color(white)(aaaa)||color(white)(aa)+color(white)(aa)-color(white)(aaaa)||color(white)(aa)+

So,

f(m)>0 when m in (-oo,-5)uu(1,3)uu(5,+oo)