How do you solve log x - log 10= 14logxlog10=14?

1 Answer
Mar 12, 2018

x=10^15x=1015

Explanation:

We make use of two identities, one - loga-logb=log(a/b)logalogb=log(ab) and if logu=vlogu=v, then u=10^vu=10v

Using them we can write logx-log10=14logxlog10=14 as

log(x/10)=14log(x10)=14

or x/10=10^14x10=1014

i.e. x=10xx10^14=10^15x=10×1014=1015