How do you solve log_3 x + log_3 (x - 8) = 2log3x+log3(x8)=2?

1 Answer
May 8, 2016

x = 9

Explanation:

Use log_b m + log_b n = log_b(mn)logbm+logbn=logb(mn)

and inverse of y=log_bxy=logbx is x = b^yx=by

Here, log_3 x+log_b(x-8)= log_3(x(x-8))=2log3x+logb(x8)=log3(x(x8))=2.

Inversely, x(x-8)=3^2=9x(x8)=32=9.

So, x^2-8x-9= (x+1)(x-9)=0x28x9=(x+1)(x9)=0.

x = -1 and 9x=1and9. Negative x is inadmissible for log_3xlog3x.