#1#. Use the log property, #log_color(purple)b(color(red)m/color(blue)n)=log_color(purple)b(color(red)m)-log_color(purple)b(color(blue)n)# to simplify the left side of the equation.
#log(2x+1)-log(x-2)=1#
#log((2x+1)/(x-2))=1#
#2#. Use the log property, #log_color(purple)b(color(purple)b^color(orange)x)=color(orange)x#, to rewrite the right side of the equation.
#log((2x+1)/(x-2))=log(10)#
#3#. Since the equation now follows a "#log=log#" situation, where the bases are the same on both sides of the equation, rewrite the equation without the "log" portion.
#(2x+1)/(x-2)=10#
#4#. Solve for #x#.
#2x+1=10(x-2)#
#2x+1=10x-20#
#8x=21#
#color(green)(|bar(ul(color(white)(a/a)x=21/8color(white)(a/a)|)))#