How do you solve log_(1/3) (x^2 + 4x) - log_(1/3) (x^3 - x) = -1?

1 Answer
Apr 27, 2016

Use the log rule log_an - log_am = log_a(n / m)

Explanation:

log_(1/3)((x^2 + 4x)/(x^3 - x)) = -1

(x^2 + 4x)/(x^3 - x) = (1/3)^-1

x^2 + 4x = 3(x^3 - x)

x^2 + 4x = 3x^3 - 3x

0 = 3x^3 + x^2 - 7x

0 = x(3x^2 + x - 7)

Solving the inner trinomial by the quadratic formula:

x = (-1 +- sqrt(1^2 - (4 xx 3 xx -7)))/(2 xx 3)

x = (-1 +- sqrt(85))/6 and 0

Hopefully this helps!