#(x+7)/ x = 7/9#
There may be more complex, quicker ways to solve this, but by simply moving around the numbers in order to isolate #x#, we can solve this question.
#(x+7)/x xx 9= 7/color(red)(cancel(color(black)(9))) color(red)(cancel(xx 9))#
#((x+7) xx 9)/ x = 7#
#(9x + 63)/ color(red)(cancel(color(black)(x))) color(red)(cancel(xx x)) = 7 color(red)(xx x)#
#9x + 63 color(red)(-7x)= color(red)(cancel(color(black)(7x) -7x))#
#2x color(red)(cancel(color(black)(+63) -63))= 0 color(red)(-63)#
#(color(red)(cancel(color(black)(2)))x)/color(red)(cancel(2)) = -63/color(red)(2)#
#color(blue)(x = -63/2)#
#color(blue)(x = -31.5)#
#ul(color(white)(xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx))#
We can check this by substituting the result for the Pronumeral.
#(x+7)/ x = 7/9#
#(-31.5 + 7)/ -31.5 = 7/9#
#(24.5 color(red)(xx 2))/ (31.5 color(red)(xx 2)) = 7/9#
#(49 color(red)(-: 7))/(63 color(red)(-: 7)) = 7/9#
#7/9 = 7/9#
#ul(color(white)(xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx))#