How do you solve for x: 2|x − 3| + 4 = 62|x3|+4=6?

1 Answer
Apr 9, 2018

x=2" or "x=4x=2 or x=4

Explanation:

"the expression inside the absolute value can be positive"the expression inside the absolute value can be positive
"or negative, hence there are 2 possible solutions"or negative, hence there are 2 possible solutions

"isolate "|x-3|isolate |x3|

"subtract 4 from both sides"subtract 4 from both sides

rArr2|x-3|=22|x3|=2

"divide both sides by 2"divide both sides by 2

rArr|x-3|=1|x3|=1

color(magenta)"Positive expression"Positive expression

x-3=1rArrx=1+3=4x3=1x=1+3=4

color(magenta)"Negative expression"Negative expression

-(x-3)=1(x3)=1

rArr-x+3=1x+3=1

rArr-x=1-3=-2rArrx=2x=13=2x=2

color(blue)"As a check"As a check

Substitute these values into the left side and if equal to the right side then they are the solutions.

x=2to2|-1|+4=(2xx1)+4=6x=22|1|+4=(2×1)+4=6

x=4to2|1|+4=(2xx1)+4=6x=42|1|+4=(2×1)+4=6

rArrx=2" or "x=4" are the solutions"x=2 or x=4 are the solutions