How do you solve for Angles A, B, C if a=20 b=30 c=25?

1 Answer
Mar 20, 2018

C~~55.77^@, B~~82.82^@, and, A~~41.41^@.

Explanation:

By the cosine formula, we have,

cosA=(b^2+c^2-a^2)/(2bc),

=(30^2+25^2-20^2)/(2*30*25),

=1125/1500.

rArr cosA=0.75.

:. A=arc cos 0.75~~41.41^@.

B=arc cos ((c^2+a^2-b^2)/(2ca)),

=arc cos((625+400-900)/(2*25*20))

=arc cos(0.125).

:. B~~82.82.

Finally, C~~180^@-(41.41^@+82.82^2)=55.77^@.