How do you solve and find the value of sin(cos^-1(3/4))? Trigonometry Inverse Trigonometric Functions Inverse Trigonometric Properties 1 Answer Ratnaker Mehta Mar 2, 2017 sqrt7/4. Explanation: Let, cos^-1(3/4)=theta. Knowing that, cos^-1 x=theta iff x=costheta, theta in [0,pi], we get, costheta=3/4, and, 0 le theta le pi. But costheta >0 rArr theta !in [pi/2,pi] rArr 0 le theta le pi/2. :. sintheta=+-sqrt(1-cos^2theta)=+-sqrt(1-9/16)=+-(sqrt7)/4. 0 le theta le pi/2 rArr sin theta gt 0 rArr sin theta=+sqrt7/4. :. sin (cos^-1(3/4))=sintheta=sqrt7/4. Enjoy Maths.! Answer link Related questions How do you use the properties of inverse trigonometric functions to evaluate tan(arcsin (0.31))? What is \sin ( sin^{-1} frac{sqrt{2}}{2})? How do you find the exact value of \cos(tan^{-1}sqrt{3})? How do you evaluate \sec^{-1} \sqrt{2} ? How do you find cos( cot^{-1} sqrt{3} ) without a calculator? How do you rewrite sec^2 (tan^{-1} x) in terms of x? How do you use the inverse trigonometric properties to rewrite expressions in terms of x? How do you calculate sin^-1(0.1)? How do you solve the inverse trig function cos^-1 (-sqrt2/2)? How do you solve the inverse trig function sin(sin^-1 (1/3))? See all questions in Inverse Trigonometric Properties Impact of this question 11538 views around the world You can reuse this answer Creative Commons License