How do you solve and find the value of cot(sin^-1(7/9))cot(sin1(79))?

1 Answer
Mar 10, 2017

+- (4sqrt2)/7±427

Explanation:

sin x = 7/9sinx=79
cot (arcsin x) = cot x
Use trig identity:
1 + cot^2 x = 1/(sin^2 x) = 81/491+cot2x=1sin2x=8149
cot^2 x = 81/49 - 1 = 32/49cot2x=81491=3249
cot x = +- (4sqrt2)/7cotx=±427.
sin x = 7/9sinx=79 --> x could be in Quadrant 1 or Quadrant 2. There fore,
cot x could be either negative or positive.