How do you solve and find the value of cot(sin^-1(5/6))?

1 Answer
Jan 19, 2017

cottheta=+sqrt11/5.

Explanation:

Let sin^-1(5/6)=theta rArr sintheta=5/6, theta in [-pi/2,pi/2]

But as sintheta >0, theta in (0,pi/2)

We require the value=cottheta

Knowing that #csc^2theta=1+cot^2theta, we have,

cot^2theta=csc^2theta-1=1/sin^2theta-1=36/25-1=11/25

rArr cottheta=+-sqrt11/5

As, theta in (0,pi/2), cottheta=+sqrt11/5.