How do you solve #a + b < 12#? Algebra Linear Inequalities and Absolute Value Absolute Value Inequalities 1 Answer Meave60 May 10, 2015 You can solve for #a# or #b#. Solve for #a# by subtracting #b# from both sides. #a<12-b# Solve for #b# by subtracting #a# from both sides. #b<12-a# Answer link Related questions How do you solve absolute value inequalities? When is a solution "all real numbers" when solving absolute value inequalities? How do you solve #|a+1|\le 4#? How do you solve #|-6t+3|+9 \ge 18#? How do you graph #|7x| \ge 21#? Are all absolute value inequalities going to turn into compound inequalities? How do you solve for x given #|\frac{2x}{7}+9 | > frac{5}{7}#? How do you solve #abs(2x-3)<=4#? How do you solve #abs(2-x)>abs(x+1)#? How do you solve this absolute-value inequality #6abs(2x + 5 )> 66#? See all questions in Absolute Value Inequalities Impact of this question 1886 views around the world You can reuse this answer Creative Commons License